A new type IV secretion system promotes conjugal transfer in Agrobacterium tumefaciens.
نویسندگان
چکیده
Two DNA transfer systems encoded by the tumor-inducing (Ti) plasmid have been previously identified in Agrobacterium tumefaciens. The virB operon is required for the transfer of transferred DNA to the plant host, and the trb system encodes functions required for the conjugal transfer of the Ti plasmid between cells of Agrobacterium. Recent availability of the genome sequence of Agrobacterium allowed us to identify a third system that is most similar to the VirB type IV secretion system of Bartonella henselae. We have designated this system avhB for Agrobacterium virulence homologue virB. The avhB loci reside on pAtC58 and encode at least 10 proteins (AvhB2 through AvhB11), 7 of which display significant similarity to the corresponding virulence-associated VirB proteins of the Ti plasmid. However, the AvhB system is not required for tumor formation; rather, it mediates the conjugal transfer of the pAtC58 cryptic plasmid between cells of Agrobacterium. This transfer occurs in the absence of the Ti plasmid-encoded VirB and Trb systems. Like the VirB system, AvhB products promote the conjugal transfer of the IncQ plasmid RSF1010, suggesting that these products comprise a mating-pair formation system. The presence of plasmid TiC58 or plasmid RSF1010 reduces the conjugal transfer efficiency of pAtC58 10- or 1,000-fold, respectively. These data suggest that complex substrate interactions exist among the three DNA transfer systems of Agrobacterium.
منابع مشابه
Small heat-shock protein HspL is induced by VirB protein(s) and promotes VirB/D4-mediated DNA transfer in Agrobacterium tumefaciens
Agrobacterium tumefaciens is a Gram-negative plant-pathogenic bacterium that causes crown gall disease by transferring and integrating its transferred DNA (T-DNA) into the host genome. We characterized the chromosomally encoded alpha-crystallin-type small heat-shock protein (alpha-Hsp) HspL, which was induced by the virulence (vir) gene inducer acetosyringone (AS). The transcription of hspL but...
متن کاملProtein secretion in Legionella pneumophila and its relation to virulence.
Protein secretion is a universal process of fundamental importance for various aspects of cell physiology including the infection of a host organism by a bacterial pathogen. Many Gram-negative pathogens export virulence-associated proteins across one or two cell membranes to their place of action using a wide plethora of secretory pathways with the objective of infecting the host. For Legionell...
متن کاملFunctional subsets of the virB type IV transport complex proteins involved in the capacity of Agrobacterium tumefaciens to serve as a recipient in virB-mediated conjugal transfer of plasmid RSF1010.
The virB-encoded type IV transport complex of Agrobacterium tumefaciens mediates the transfer of DNA and proteins into plant cells, as well as the conjugal transfer of IncQ plasmids, such as RSF1010, between Agrobacterium strains. While several studies have indicated that there are physical interactions among the 11 VirB proteins, the functional significance of the interactions has been difficu...
متن کاملMembrane and Core Periplasmic Agrobacterium tumefaciens Virulence Type IV Secretion System Components Localize to Multiple Sites around the Bacterial Perimeter during Lateral Attachment to Plant Cells
UNLABELLED Type IV secretion systems (T4SS) transfer DNA and/or proteins into recipient cells. Here we performed immunofluorescence deconvolution microscopy to localize the assembled T4SS by detection of its native components VirB1, VirB2, VirB4, VirB5, VirB7, VirB8, VirB9, VirB10, and VirB11 in the C58 nopaline strain of Agrobacterium tumefaciens, following induction of virulence (vir) gene ex...
متن کاملDefinition of a bacterial type IV secretion pathway for a DNA substrate.
Bacteria use conjugation systems, a subfamily of the type IV secretion systems, to transfer DNA to recipient cells. Despite 50 years of research, the architecture and mechanism of action of the channel mediating DNA transfer across the bacterial cell envelope remains obscure. By use of a sensitive, quantifiable assay termed transfer DNA immunoprecipitation (TrIP), we identify contacts between a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 184 17 شماره
صفحات -
تاریخ انتشار 2002